Autoregressive Moving Average Modell Definition


Autoregressive Integrated Moving Average - ARIMA DEFINITION Autoregressive Integrated Moving Average - ARIMA Ein statistisches Analyse-Modell, das Zeitreihen-Daten verwendet, um zukünftige Trends vorherzusagen. Es ist eine Form der Regressionsanalyse, die künftige Bewegungen entlang der scheinbar zufälligen Wanderung von Aktien und dem Finanzmarkt vorhersagen will, indem sie die Unterschiede zwischen den Werten in der Reihe untersucht, anstatt die tatsächlichen Datenwerte zu verwenden. Lags der differenzierten Serien werden als autoregressiv bezeichnet und Verzögerungen innerhalb der prognostizierten Daten werden als gleitender Durchschnitt bezeichnet. BREAKING DOWN Autoregressive Integrated Moving Average - ARIMA Dieser Modelltyp wird im Allgemeinen als ARIMA (p, d, q) bezeichnet, wobei die Ganzzahlen sich auf den autoregressiven beziehen. Integrierte und gleitende Mittelteile des Datensatzes. ARIMA-Modellierung kann Trends berücksichtigen, Saisonalität. Zyklen, Fehlern und nicht-stationären Aspekten eines Datensatzes bei der Vorhersage. RIMA steht für autoregressive integrierte Moving Average Modelle. Univariate (Einzelvektor) ARIMA ist eine Prognosetechnik, die die zukünftigen Werte einer Serie, die ganz auf ihrer eigenen Trägheit basiert, projiziert. Seine Hauptanwendung liegt im Bereich der kurzfristigen Prognose, die mindestens 40 historische Datenpunkte erfordert. Es funktioniert am besten, wenn Ihre Daten ein stabiles oder konsistentes Muster im Laufe der Zeit mit einem Minimum an Ausreißern aufweisen. Manchmal genannt Box-Jenkins (nach den ursprünglichen Autoren) ist ARIMA in der Regel exponentiellen Glättungstechniken überlegen, wenn die Daten vernünftig lang sind und die Korrelation zwischen vergangenen Beobachtungen stabil ist. Wenn die Daten kurz oder stark flüchtig sind, kann eine Glättungsmethode besser funktionieren. Wenn Sie nicht mindestens 38 Datenpunkte haben, sollten Sie eine andere Methode als ARIMA beachten. Der erste Schritt bei der Anwendung der ARIMA-Methodik ist die Überprüfung der Stationarität. Stationarity impliziert, dass die Serie auf einem ziemlich konstanten Niveau im Laufe der Zeit bleibt. Wenn ein Trend existiert, wie in den meisten wirtschaftlichen oder geschäftlichen Anwendungen, dann sind Ihre Daten nicht stationär. Die Daten sollten auch eine konstante Varianz in ihren Schwankungen über die Zeit zeigen. Dies ist leicht zu sehen mit einer Serie, die stark saisonal und wächst mit einer schnelleren Rate. In einem solchen Fall werden die Höhen und Tiefen in der Saisonalität im Laufe der Zeit dramatischer werden. Ohne dass diese stationären Bedingungen erfüllt sind, können viele der mit dem Prozess verbundenen Berechnungen nicht berechnet werden. Wenn eine grafische Darstellung der Daten eine Nichtstationarität anzeigt, dann sollten Sie die Serie unterscheiden. Das Unterscheiden ist eine hervorragende Möglichkeit, eine nichtstationäre Serie in eine stationäre zu verwandeln. Dies geschieht durch Subtraktion der Beobachtung in der aktuellen Periode von der vorherigen. Wenn diese Umwandlung nur einmal zu einer Serie erfolgt, sagst du, dass die Daten zuerst differenziert wurden. Dieser Prozess eliminiert im Wesentlichen den Trend, wenn Ihre Serie mit einer konstanten Rate wächst. Wenn es mit zunehmender Rate wächst, können Sie das gleiche Verfahren anwenden und die Daten wieder unterscheiden. Ihre Daten würden dann zweiter differenziert. Autokorrelationen sind Zahlenwerte, die angeben, wie sich eine Datenreihe über die Zeit verhält. Genauer gesagt, es misst, wie stark Datenwerte bei einer bestimmten Anzahl von Perioden auseinander mit der Zeit miteinander korreliert sind. Die Anzahl der Perioden auseinander ist in der Regel die Verzögerung genannt. Beispielsweise misst eine Autokorrelation bei Verzögerung 1, wie die Werte 1 Periode auseinander in der ganzen Reihe miteinander korreliert sind. Eine Autokorrelation bei Verzögerung 2 misst, wie die Daten zwei Perioden voneinander getrennt sind. Autokorrelationen können von 1 bis -1 reichen. Ein Wert nahe 1 gibt eine hohe positive Korrelation an, während ein Wert nahe bei -1 eine hohe negative Korrelation impliziert. Diese Maßnahmen werden am häufigsten durch grafische Darstellungen als Korrelate ausgewertet. Ein Korrektogramm zeichnet die Autokorrelationswerte für eine gegebene Serie bei verschiedenen Verzögerungen auf. Dies wird als Autokorrelationsfunktion bezeichnet und ist bei der ARIMA-Methode sehr wichtig. Die ARIMA-Methodik versucht, die Bewegungen in einer stationären Zeitreihe als Funktion von sogenannten autoregressiven und gleitenden Durchschnittsparametern zu beschreiben. Diese werden als AR-Parameter (autoregessive) und MA-Parameter (gleitende Durchschnitte) bezeichnet. Ein AR-Modell mit nur 1 Parameter kann als geschrieben werden. X (t) A (1) X (t-1) E (t) wobei X (t) Zeitreihe unter Untersuchung A (1) der autoregressive Parameter der Ordnung 1 X (t-1) die Zeitreihe verzögerte 1 Periode E (T) der Fehlerterm des Modells Dies bedeutet einfach, dass jeder gegebene Wert X (t) durch eine Funktion seines vorherigen Wertes X (t-1) plus einen unerklärlichen Zufallsfehler E (t) erklärt werden kann. Wenn der Schätzwert von A (1) 0,30 betrug, würde der aktuelle Wert der Reihe mit 30 seines Wertes 1 verknüpft sein. Natürlich könnte die Serie auf mehr als nur einen vergangenen Wert bezogen werden. Beispielsweise ist X (t) A (1) X (t-1) A (2) X (t-2) E (t) Dies zeigt an, dass der aktuelle Wert der Reihe eine Kombination der beiden unmittelbar vorhergehenden Werte ist, X (t-1) und X (t-2), plus einige zufällige Fehler E (t). Unser Modell ist jetzt ein autoregressives Modell der Ordnung 2. Moving Average Models: Eine zweite Art von Box-Jenkins-Modell heißt ein gleitendes Durchschnittsmodell. Obwohl diese Modelle dem AR-Modell sehr ähnlich sind, ist das Konzept hinter ihnen ganz anders. Bewegliche Durchschnittsparameter beziehen sich auf das, was in der Periode t nur auf die zufälligen Fehler geschieht, die in vergangenen Zeitperioden aufgetreten sind, dh E (t-1), E (t-2) usw. anstelle von X (t-1), X ( T-2), (Xt-3) wie in den autoregressiven Ansätzen. Ein gleitendes Durchschnittsmodell mit einem MA-Term kann wie folgt geschrieben werden. X (t) - B (1) E (t-1) E (t) Der Ausdruck B (1) heißt MA der Ordnung 1. Das negative Vorzeichen vor dem Parameter wird nur für Konvention verwendet und wird üblicherweise ausgedruckt Automatisch von den meisten Computerprogrammen. Das obige Modell sagt einfach, dass jeder gegebene Wert von X (t) direkt nur mit dem zufälligen Fehler in der vorherigen Periode E (t-1) und dem aktuellen Fehlerterm E (t) zusammenhängt. Wie bei autoregressiven Modellen können die gleitenden Durchschnittsmodelle auf Strukturen höherer Ordnung ausgedehnt werden, die unterschiedliche Kombinationen und gleitende Durchschnittslängen abdecken. Die ARIMA-Methodik ermöglicht auch die Erstellung von Modellen, die sowohl autoregressive als auch gleitende Durchschnittsparameter umfassen. Diese Modelle werden oft als gemischte Modelle bezeichnet. Obwohl dies für ein komplizierteres Vorhersage-Tool macht, kann die Struktur tatsächlich die Serie besser simulieren und eine genauere Prognose erzeugen. Pure Modelle implizieren, dass die Struktur nur aus AR - oder MA-Parametern besteht - nicht beides. Die von diesem Ansatz entwickelten Modelle werden in der Regel als ARIMA-Modelle bezeichnet, weil sie eine Kombination von autoregressiven (AR), Integration (I) - beziehen sich auf den umgekehrten Prozess der Differenzierung, um die Prognose zu produzieren, und gleitende durchschnittliche (MA) Operationen. Ein ARIMA-Modell wird üblicherweise als ARIMA (p, d, q) angegeben. Dies stellt die Reihenfolge der autoregressiven Komponenten (p), die Anzahl der differenzierenden Operatoren (d) und die höchste Ordnung des gleitenden Durchschnittsterms dar. Zum Beispiel bedeutet ARIMA (2,1,1), dass Sie ein autoregressives Modell zweiter Ordnung mit einer gleitenden durchschnittlichen Komponente erster Ordnung haben, deren Serie einmal differenziert wurde, um die Stationarität zu induzieren. Kommissionierung der richtigen Spezifikation: Das Hauptproblem in der klassischen Box-Jenkins versucht zu entscheiden, welche ARIMA-Spezifikation - i. e. Wie viele AR - und MA-Parameter enthalten sind. Dies ist, was viel von Box-Jenkings 1976 dem Identifizierungsprozess gewidmet war. Es hing von der grafischen und numerischen Auswertung der Probenautokorrelation und partiellen Autokorrelationsfunktionen ab. Nun, für Ihre Basismodelle ist die Aufgabe nicht allzu schwierig. Jeder hat Autokorrelationsfunktionen, die eine bestimmte Art und Weise aussehen. Wenn du aber in der Komplexität stehst, sind die Muster nicht so leicht zu erkennen. Um die Sache schwieriger zu machen, stellt Ihre Daten nur eine Stichprobe des zugrunde liegenden Prozesses dar. Dies bedeutet, dass Abtastfehler (Ausreißer, Messfehler usw.) den theoretischen Identifikationsvorgang verzerren können. Das ist der Grund, warum traditionelle ARIMA-Modellierung eine Kunst und nicht eine Wissenschaft ist. Autoregressive Moving Average ARMA (p, q) Modelle für Time Series Analysis - Teil 3 Dies ist der dritte und letzte Beitrag in der Mini-Serie auf Autoregressive Moving Average (ARMA) Modelle für die Zeitreihenanalyse. Weve eingeführt Autoregressive Modelle und Moving Average Modelle in den beiden vorherigen Artikeln. Jetzt ist es Zeit, sie zu kombinieren, um ein anspruchsvolleres Modell zu produzieren. Letztlich wird uns dies zu den ARIMA - und GARCH-Modellen führen, die es uns ermöglichen, die Vermögensrenditen vorherzusagen und die Volatilität zu prognostizieren. Diese Modelle bilden die Grundlage für den Handel von Signalen und Risikomanagementtechniken. Wenn Sie Teil 1 und Teil 2 lesen, werden Sie gesehen haben, dass wir ein Muster für unsere Analyse eines Zeitreihenmodells folgen. Ill wiederholen Sie es kurz hier: Begründung - Warum interessieren wir uns für dieses spezielle Modell Definition - Eine mathematische Definition, um Mehrdeutigkeit zu reduzieren. Correlogram - Plotten eines Beispiel-Korrelogramms, um ein Modellverhalten zu visualisieren. Simulation und Montage - Anpassung des Modells an Simulationen, um sicherzustellen, dass wir das Modell richtig verstanden haben. Echte Finanzdaten - Bewerben Sie das Modell auf echte historische Vermögenspreise. Vorhersage - Prognose nachfolgende Werte zum Erstellen von Handelssignalen oder Filtern. Um diesem Artikel zu folgen, empfiehlt es sich, die vorherigen Artikel zur Zeitreihenanalyse zu betrachten. Sie können alle hier gefunden werden. Bayesian Information Criterion In Teil 1 dieser Artikelserie sahen wir das Akaike Information Criterion (AIC) als Mittel an, uns dabei zu helfen, zwischen separaten besten Zeitreihenmodellen zu wählen. Ein eng verwandtes Werkzeug ist das Bayesian Information Criterion (BIC). Im Wesentlichen hat es ein ähnliches Verhalten gegenüber der AIC, dass es Modelle für mit zu vielen Parametern bestraft. Dies kann zu Überfüllung führen. Der Unterschied zwischen dem BIC und dem AIC ist, dass der BIC mit seiner Bestrafung zusätzlicher Parameter strenger ist. Bayesian Information Criterion Wenn wir die Wahrscheinlichkeitsfunktion für ein statistisches Modell, das k Parameter hat, und L maximiert die Wahrscheinlichkeit zu nehmen. Dann ist das Bayesian Information Criterion gegeben durch: Wo n ist die Anzahl der Datenpunkte in der Zeitreihe. Wir werden bei der Auswahl geeigneter ARMA (p, q) Modelle die AIC und BIC verwenden. Ljung-Box Test In Teil 1 dieser Artikel-Serie Rajan erwähnt in der Disqus Bemerkungen, dass die Ljung-Box-Test war besser geeignet als mit dem Akaike Information Criterion der Bayesian Information Criterion bei der Entscheidung, ob ein ARMA-Modell war eine gute Passform zu einer Zeit Serie. Der Ljung-Box-Test ist ein klassischer Hypothesentest, der entworfen ist, um zu testen, ob ein Satz von Autokorrelationen eines angepassten Zeitreihenmodells sich deutlich von Null unterscheidet. Der Test testet nicht jede einzelne Verzögerung für Zufälligkeit, sondern prüft die Zufälligkeit über eine Gruppe von Verzögerungen. Ljung-Box-Test Wir definieren die Nullhypothese als: Die Zeitreihendaten bei jeder Verzögerung sind i. i.d .. das heißt, die Korrelationen zwischen den Populationsreihenwerten sind Null. Wir definieren die alternative Hypothese als: Die Zeitreihendaten sind nicht i. i.d. Und besitzen eine serielle Korrelation. Wir berechnen die folgende Teststatistik. Q: Wenn n die Länge der Zeitreihenprobe ist, ist H die Probe Autokorrelation bei Verzögerung k und h ist die Anzahl der Verzögerungen unter dem Test. Die Entscheidungsregel, ob die Nullhypothese zurückgewiesen werden soll, besteht darin, zu prüfen, ob Q gt chi2, für eine chi-quadratische Verteilung mit h Freiheitsgraden bei dem 100 (1-alpha) - ten Perzentil. Während die Details des Tests etwas kompliziert erscheinen können, können wir in der Tat R verwenden, um den Test für uns zu berechnen, was die Prozedur etwas vereinfacht. Autogressive Moving Average (ARMA) Modelle der Ordnung p, q Nun, da wir den BIC und den Ljung-Box-Test besprochen haben, waren wir bereit, unser erstes gemischtes Modell zu besprechen, nämlich den Autoregressiven Moving Average der Ordnung p, q oder ARMA (p, Q). Bisher haben wir autoregressive Prozesse und gleitende Mittelprozesse betrachtet. Das ehemalige Modell betrachtet sein eigenes vergangenes Verhalten als Inputs für das Modell und als solche Versuche, Marktteilnehmereffekte wie Impuls und Mittelwertreduktion im Aktienhandel zu erfassen. Das letztere Modell wird verwendet, um Schock-Informationen zu einer Serie zu charakterisieren, wie etwa eine Überraschungs-Gewinn-Ankündigung oder ein unerwartetes Ereignis (wie die BP Deepwater Horizon Ölpest). Daher versucht ein ARMA-Modell, diese beiden Aspekte bei der Modellierung von finanziellen Zeitreihen zu erfassen. Beachten Sie, dass ein ARMA-Modell nicht berücksichtigt Volatilität Clustering, eine wichtige empirische Phänomene von vielen finanziellen Zeitreihen. Es ist kein bedingungslos heteroscedastisches Modell. Dafür müssen wir auf die ARCH - und GARCH-Modelle warten. Definition Das ARMA (p, q) Modell ist eine lineare Kombination von zwei linearen Modellen und ist damit selbst noch linear: Autoregressives Moving Average Modell der Ordnung p, q Ein Zeitreihenmodell, ist ein autoregressives gleitendes durchschnittliches Modell der Ordnung p, q . ARMA (p, q), wenn: xt alpha1 x alpha2 x ldots wt beta1 w beta2 w ldots betaq w Ende Wo ist weißes Rauschen mit E (wt) 0 und Varianz sigma2. Wenn wir den Backward Shift Operator betrachten. (Siehe einen vorherigen Artikel), dann können wir das obige als Funktion theta und phi umschreiben: Wir können einfach sehen, dass durch die Einstellung von p neq 0 und q0 wir das AR (p) Modell wiederherstellen. Ähnlich, wenn wir p 0 und q neq 0 setzen, gewinnen wir das MA (q) Modell zurück. Eines der Hauptmerkmale des ARMA-Modells ist, dass es in seinen Parametern sparsam und redundant ist. Das heißt, ein ARMA-Modell benötigt oft weniger Parameter als ein AR (p) oder MA (q) - Modell allein. Darüber hinaus, wenn wir die Gleichung in Bezug auf die BSO umschreiben, dann können die theta und phi Polynome manchmal einen gemeinsamen Faktor teilen, was zu einem einfacheren Modell führt. Simulationen und Correlograms Wie bei den autoregressiven und gleitenden Durchschnittsmodellen werden wir nun verschiedene ARMA-Serien simulieren und dann versuchen, ARMA-Modelle an diese Realisierungen anzupassen. Wir führen dies aus, weil wir sicherstellen wollen, dass wir das Anpassungsverfahren verstehen, einschließlich der Berechnung von Konfidenzintervallen für die Modelle, sowie sicherstellen, dass das Verfahren tatsächlich angemessene Schätzungen für die ursprünglichen ARMA-Parameter wiederherstellt. In Teil 1 und Teil 2 haben wir die AR - und MA-Serie manuell konstruiert, indem wir N Abtastwerte aus einer Normalverteilung ziehen und dann das spezifische Zeitreihenmodell unter Verwendung von Verzögerungen dieser Proben erstellen. Allerdings gibt es einen einfacheren Weg, um AR-, MA-, ARMA - und sogar ARIMA-Daten zu simulieren, indem einfach die arima. sim-Methode in R verwendet wird. Beginnen wir mit dem einfachsten nicht-trivialen ARMA-Modell, nämlich dem ARMA (1,1 ) Modell. Das heißt, ein autoregressives Modell der Ordnung, kombiniert mit einem gleitenden Durchschnittsmodell der Ordnung eins. Ein solches Modell hat nur zwei Koeffizienten, Alpha und Beta, die die ersten Verzögerungen der Zeitreihe selbst und die schockweißen Rauschbegriffe darstellen. Ein solches Modell ist gegeben durch: Wir müssen die Koeffizienten vor der Simulation angeben. Nehmen wir alpha 0,5 und beta -0,5: Die Ausgabe ist wie folgt: Lets auch das Korrelogramm: Wir können sehen, dass es keine signifikante Autokorrelation gibt, die von einem ARMA (1,1) - Modell zu erwarten ist. Schließlich können wir die Koeffizienten und ihre Standardfehler mit der arima-Funktion ausführen: Wir können die Konfidenzintervalle für jeden Parameter mit den Standardfehlern berechnen: Die Konfidenzintervalle enthalten die wahren Parameterwerte für beide Fälle, aber wir sollten beachten, dass die 95 Konfidenzintervalle sind sehr breit (eine Folge der vernünftig großen Standardfehler). Lass jetzt ein ARMA (2,2) Modell versuchen. Das heißt, ein AR (2) Modell kombiniert mit einem MA (2) Modell. Wir müssen vier Parameter für dieses Modell angeben: alpha1, alpha2, beta1 und beta2. Nehmen wir alpha1 0,5, alpha2-0.25 beta10.5 und beta2-0.3: Die Ausgabe unseres ARMA (2,2) Modells ist wie folgt: Und die entsprechende Autocorelation: Wir können nun versuchen, ein ARMA (2,2) Modell anzupassen Die Daten: Wir können auch die Konfidenzintervalle für jeden Parameter berechnen: Beachten Sie, dass die Konfidenzintervalle für die Koeffizienten für die gleitende Durchschnittskomponente (beta1 und beta2) tatsächlich nicht den ursprünglichen Parameterwert enthalten. Dies stellt die Gefahr dar, dass man versucht, Modelle an Daten anzupassen, auch wenn wir die wahren Parameterwerte kennen. Aber für Handelszwecke müssen wir nur eine prädiktive Kraft haben, die den Zufall übersteigt und genügend Gewinn über den Transaktionskosten produziert, um rentabel zu sein auf lange Sicht. Nun, da wir einige Beispiele für simulierte ARMA-Modelle gesehen haben, brauchen wir einen Mechanismus zur Auswahl der Werte von p und q bei der Anpassung an die Modelle an reale Finanzdaten. Auswählen des besten ARMA (p, q) Modells Um zu bestimmen, welche Reihenfolge p, q des ARMA-Modells für eine Serie geeignet ist, müssen wir die AIC (oder BIC) über eine Teilmenge von Werten für p, q und Dann den Ljung-Box-Test anwenden, um festzustellen, ob eine gute Passung erreicht ist, für bestimmte Werte von p, q. Um diese Methode zu zeigen, werden wir zunächst einen bestimmten ARMA (p, q) Prozess simulieren. Wir werden dann alle paarweise Werte von p in und q in und über die AIC berechnen. Wir wählen das Modell mit dem niedrigsten AIC und führen dann einen Ljung-Box-Test auf die Residuen, um festzustellen, ob wir eine gute Passform erreicht haben. Lasst uns anfangen, eine ARMA (3,2) - Serie zu simulieren: Wir erstellen nun ein Objekt endgültig, um die beste Modellanpassung und den niedrigsten AIC-Wert zu speichern. Wir schleifen über die verschiedenen p, q Kombinationen und verwenden das aktuelle Objekt, um die Anpassung eines ARMA (i, j) Modells für die Looping Variablen i und j zu speichern. Wenn die aktuelle AIC kleiner als jede zuvor berechnete AIC ist, setzen wir die endgültige AIC auf diesen aktuellen Wert und wählen diese Reihenfolge aus. Nach Beendigung der Schleife haben wir die Reihenfolge des ARMA-Modells in final. order gespeichert und die ARIMA (p, d, q) passen sich an (mit der integrierten d-Komponente auf 0) als final. arma gespeichert: Letzt die Ausgabe der AIC , Ordnung und ARIMA Koeffizienten: Wir können sehen, dass die ursprüngliche Reihenfolge des simulierten ARMA-Modells wiederhergestellt wurde, nämlich mit p3 und q2. Wir können das Corelogramm der Residuen des Modells abbilden, um zu sehen, ob sie wie eine Realisierung von diskreten weißen Geräuschen (DWN) aussehen: Das Corelogramm sieht in der Tat wie eine Realisierung von DWN aus. Schließlich führen wir den Ljung-Box-Test für 20 Verzögerungen durch, um dies zu bestätigen: Beachten Sie, dass der p-Wert größer als 0,05 ist, was besagt, dass die Residuen auf der 95-Ebene unabhängig sind und somit ein ARMA (3,2) - Modell eine Gutes modell passend Eindeutig sollte dies der Fall sein, da wir die Daten selbst simuliert haben. Dies ist jedoch genau das Verfahren, das wir verwenden werden, wenn wir ARMA (p, q) Modelle auf den SampP500 Index im folgenden Abschnitt passen. Finanzdaten Nun, da wir das Verfahren zur Auswahl des optimalen Zeitreihenmodells für eine simulierte Serie skizziert haben, ist es ziemlich einfach, es auf Finanzdaten anzuwenden. Für dieses Beispiel werden wir noch einmal den SampP500 US Equity Index wählen. Lässt die täglichen Schlusskurse mit quantmod herunterladen und dann den Log-Return-Stream erstellen: Lass die gleiche Anpassungsprozedur wie für die simulierte ARMA (3,2) - Serie oben auf der Log-Returns-Serie des SampP500 mit dem AIC: Das beste passende Modell Hat bestellen ARMA (3,3): Lets Plot die Residuen des angepassten Modells auf die SampP500 log täglichen Renditen Stream: Beachten Sie, dass es einige signifikante Spitzen, vor allem bei höheren Lags. Dies ist ein Hinweis auf eine schlechte Passform. Lasst uns einen Ljung-Box-Test durchführen, um zu sehen, ob wir statistische Beweise dafür haben: Wie wir vermutet haben, ist der p-Wert weniger als 0,05 und als solche können wir nicht sagen, dass die Residuen eine Realisierung von diskreten weißen Rauschen sind. Daher gibt es eine zusätzliche Autokorrelation in den Resten, die nicht durch das eingebaute ARMA (3,3) Modell erklärt wird. Nächste Schritte Wie wir in dieser Artikelserie ausführlich diskutiert haben, haben wir in der SampP500-Serie vor allem in den Perioden um 2007-2008 einen Hinweis auf eine bedingte Heterosedastizität (Volatilitätsclustering) gesehen. Wenn wir ein GARCH-Modell später in der Artikelserie verwenden, werden wir sehen, wie man diese Autokorrelationen beseitigt. In der Praxis sind ARMA-Modelle niemals im Allgemeinen gut passt für Log-Aktien-Renditen. Wir müssen die bedingte Heterosedastizität berücksichtigen und eine Kombination aus ARIMA und GARCH verwenden. Der nächste Artikel wird ARIMA betrachten und zeigen, wie sich die integrierte Komponente von dem ARMA-Modell unterscheidet, das wir in diesem Artikel berücksichtigt haben. Nur mit dem quantitativen Handel begonnen

Comments

Popular Posts